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1. Introduction 

Since early 2002, the International Research Institute for Climate and Society (IRI) has issued, each 

month, a collection of the forecasts from a large number of ENSO forecasting institutions, in the form of an 

ENSO prediction plume (Fig. 1). The forecasts predict the Nino3.4 index in the tropical Pacific (SST 

averaged over 5ºN-5ºS, 120º-170ºW). 

In late 2011 this forecast plume became a product of both IRI and the NOAA Climate Prediction Center 

(CPC). Although the product has been popular and frequently viewed on the Web, it has had several 

significant problems: 

• The forecast producers do not 

form their anomalies with respect to the 

same 30-year base periods as encouraged, 

and IRI/CPC does not correct for such 

(usually minor) deviations. 

• The forecast spread within 

individual models, indicative of model 

uncertainty, is ignored and only the mean 

forecast is shown. 

• Model biases, evident upon 

examination of hindcasts, are not 

corrected; and some forecasts are from 

models that lack hindcasts. 

• No attempt is made to provide a 

final forecast probability distribution; 

users see the spread of the model forecasts 

and are left to surmise the uncertainty on 

their own.   

Of the four problems listed above, the 

third one appears most serious, because 

some of the dynamical models are known 

to have substantial (>0.5ºC) biases. Hence, some of the spread in the model forecasts shown in Fig. 1, even at 

very short lead times, may well be due to differing model biases. The ENSO forecast plumes posted on the 

CPC Web site from the North American Multi-model Ensemble (NMME) project (Kirtman et al. 2014) have 

undergone hindcast-based bias correction by start month and lead time, and the resulting plume is noticeably 

less wide than the IRI/CPC plume at short leads. The NMME plume also shows all ensemble members of all 

models, forming a very dense cluster of lines on the plot.  

Fig. 1  Example of an IRI/CPC ENSO prediction plume product, 

issued in mid-August 2013. 
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The current work attempts to develop a protocol for 

selecting and processing the incoming forecasts for the IRI/CPC 

plume so as to eliminate or greatly reduce each of the problems 

identified above. Because the most serious problem (lack of bias 

correction) requires a multidecadal hindcast history to evaluate 

bias, it appears that forecasts from models lacking an adequate 

hindcast history will not qualify for a higher quality version of 

the plume.  

This work uses as test cases a set of 6 models from the 

NMME project, because those models all have 29-year hindcast 

data that is conveniently available. The 6 models include (1) 

NCAR/Univ. Miami CCSM3 (6 members), (2) NOAA/NCEP 

CFSv2 (24 members), (3) Canada CMC#1 (10 members), (4) 

Canada CMC#2 (10 members), (5) NOAA GFDL model (10 

members), and (6) NASA model (11 members). All 6 models 

have a 1982-2010 hindcast period. Models’ maximum lead times 

vary from 9 to 12 months. Besides looking at the forecast 

characteristics of each model, those of the combined forecast 

(our MME) are studied. The MME is formed by combining the 

individual ensemble members of all of the models. Because 

some models have many more members than others, the number of members acts as an effective weighting 

system: e.g., the NOAA/NCEP CFSv2 has 4 times as many ensemble members as the NCAR /Univ. Miami 

CCSM3, so it will exert 4 times the weight of CCSM3 in forming the MME forecast. Here, we forecast 1-

month mean SST rather than seasonal mean SST as done in the IRI/CPC plume. 

2. Results 

The basic discrimination skill of each of the 6 models is examined using the temporal correlation (or 

“anomaly correlation”) between Nino3.4 SST hindcast and observation for each start month and each lead 

time up to 12 months lead. Although the model skill profiles differ from one another in their details, all are 

seen to have acceptable profiles with the expected seasonal distribution (not shown). However, an 

examination of mean bias indicates major differences in bias among the models, both in general severity and 

in distribution over start months and leads. It is clear that each model should be bias-corrected prior to being 

shown on an improved ENSO prediction plume. The net bias of the MME, shown in Fig. 2, lacks the severity 

of the biases of individual models due to some bias cancellation, but still reveals a moderate negative bias at 

long leads and at intermediate leads for some times of the year. 

Another kind of bias that individual models may carry is forecast amplitude bias. The interannual 

standard deviation of the forecasts should not be larger than that warranted by the model’s correlation skill, 

which would be approximately that of the observations multiplied by the skill (Hayes 1973). Such a 

prescription for the amplitude of the ensemble mean forecast would minimize mean squared errors and 

produce probabilistically reliable forecasts. However, each model has its “own world”, with signal-to-noise 

ratios that may not agree with that of the real world. It turns out that the amplitude of the MME forecast does 

not deviate greatly from the ideal amplitude, so that correction of the amplitude by start month and lead does 

not greatly change the performance of the forecasts. Figure 3 shows the root-mean-square error (RMSE) skill 

score, defined as 1 – (RMSEfct / RMSEcli) where fct refers to the forecasts and cli refers to perpetual 

climatology forecasts (i.e., zero anomaly). Figure 3 shows that the RMSE is generally substantially improved 

with bias correction, and only slightly more by forecast amplitude correction. 

Although amplitude correction does not change the RMSE skill score dramatically, the amplitude 

corrections are not minor. Figure 4 shows the MME forecast-to-observation standard deviation ratio before 

and after correction for the amplitude, and it is clear that the forecasts tend to have too high a standard 

deviation before correction, especially at intermediate and long leads. While the standard deviation of 

individual ensemble members is expected to be comparable to that of the observations for all start times at all 

Fig. 2  Bias of the MME in forecasts of 

Nino3.4 SST, by start month (from Jan 

to Dec along x-axis) and lead time 

(from 1 to 12 from bottom to top along 

y-axis). 
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leads, that of the ensemble means should be in proportion to the lack of predictability. Although predictability 

within each model’s world is estimated by its signal-to-noise ratio (interannual standard deviation of 

ensemble mean forecast versus ensemble spread), the actual predictability is better estimated by the 

correlation between the forecasts and observations. It is this latter measure of realized predictive skill that 

should govern the interannual standard deviation of the forecasts. 

The most appropriate interannual standard deviation for each start month and lead time is determined by 

the actual temporal correlation skill of the hindcasts with observations, such that a correlation of 0.5 would 

imply an ideal MME forecast standard deviation of 0.5 that of the observations. Using this indirect way to set 

the forecast amplitude corrects for model signal-to-noise ratios that do not properly reproduce that in nature.  

An important characteristic of a forecast is its uncertainty. For individual forecasts, uncertainty is ideally 

expressed by the spread of the ensemble members. Even the shape of the distribution of the member forecasts 

may occasionally be meaningful if it is based on the physics at play in the forecast rather than just accidental 

Fig. 3  RMSE skill score for the MME forecasts, by start month (x-axis) and lead time (y-axis). See the text for 

the definition of the score. The left panel shows skills without any corrections, the middle panel with 

individual model bias corrections, and right panel with both bias and amplitude corrections. 

Fig. 4  Standard deviation ratio of MME forecasts versus observations. Left panel shows ratios without 

amplitude correction, middle panel with amplitude correction, and right panel the ratio of the values 

without correction to those with correction (note the different scale for the right panel).  
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sampling variability in the finite set of ensemble members. A check for a reasonable magnitude of ensemble 

spread is the standard error of estimate, based again on the actual correlation skill of the MME forecasts over 

the hindcast period, by start month and lead time. The standard error of estimate (SEE) is defined by 

  

The above formula implies that high-skill forecasts should have a smaller spread than lower-skill forecasts. Is 

this formula followed to first order in the MME hindcasts? Figure 5 shows the ratio of the MME spread 

(across all model members) and the skill-based SEE for the cases of no corrections, only bias corrections, and 

bias and amplitude corrections. The ratios in Fig. 5 indicate far too much spread in model members without 

bias correction, and a much more realistic spread after bias correction. Further improvement of the ratio 

(toward 1) occurs with amplitude correction. 

One contribution to 

the spread of the MME 

forecasts is that among 

the members of each 

model with respect to its 

own ensemble mean, 

while a second 

contribution is that of the 

differing ensemble means 

across the models. We 

ask how much the first 

component of the spread 

is contributing to the total 

spread. Figure 6 shows 

this aggregated “internal” 

member spread before 

and after amplitude 

correction. The internal 

spread after the amplitude 

correction is generally 

Fig. 5  Ratio of the MME spread (across all model members) to the actual hindcast skill-based standard error of 

estimate. Left panel shows the ratio for no corrections, middle panel for only bias corrections, and right 

panel for both bias and amplitude corrections. The ideal ratio is 1. 

Fig. 6  Spread of the MME forecasts coming from the variation of the members 

of each model with respect to its own ensemble mean (“internal” model 

spread). Left panel shows internal spread before amplitude correction, right 

panel following amplitude correction. 
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well below the level that 

is compatible with the 

SEE. 

Figure 7 illustrates an 

example of the effects of 

the bias and amplitude 

corrections in an 

individual forecast case—

here, for forecasts from 

June 2009 for what turned 

out to be a moderate 

strength El Niño during 

late 2009 and early 2010. 

Without any correction, 

the MME forecast 

substantially 

underestimates the 

strength of the event, and 

the uncertainty is 

overestimated (especially 

at short lead times) due to 

the differing biases of the 

ensemble means of the 

various models. Note that 

the ensemble mean 

forecasts of the different 

models differ greatly 

without any correction. 

Correction of the mean 

biases leads to a much 

improved MME forecast 

(middle panel) and more 

realistic width of the 

uncertainty distribution. 

Correction for the 

amplitude as well as the 

bias results in slight 

underestimation of the 

strength of the event, and 

some underestimation of 

the amount of uncertainty 

at short leads. The 

strength underestimation 

may be partly a result of the more conservative forecast amplitude following amplitude correction. 

3. Summary and discussion 

Findings from this study so far are as follows:  

Multi-model ensemble spread is considerably larger than the SEE-based (more likely realistic) spread 

when the models’ differing biases are uncorrected. The ratio between the two spreads is about 1.5 to 1.8 

before bias correction, and about 1.2 to 1.4 after individual model bias corrections.  
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Fig. 7  MME forecasts from June 2009 for the period of the 2009/2010 El Niño 

event. Top panel shows forecasts without any corrections, middle panel after 

bias correction, and bottom panel after bias and amplitude correction. The 

blue line and solid dots show the MME mean forecasts; the black line and 

dots show the observations. The horizontal ticks on the vertical line for each 

month show individual model ensemble mean forecasts. The thin blue vertical 

vertical Gaussian distribution curves show forecast uncertainty based on the 

MME spread, and the thin red vertical distribution curves show uncertainty 

based on the hindcast skill-based standard error of estimate. 
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The ratio of internal spread around individual model ensemble means (i.e., the spread of individual model 

ensemble members) to the standard error of estimate is in 0.8 – 1.0 range, showing slightly too tight an 

ensemble distribution. This result is expected in view of individual models having their own universe, and 

often (not always) recognizing less noise in that universe than there is in the real world. 

Correcting forecasts so that the ratio of their interannual SD equals that of observations multiplied by 

their correlation skill (i.e., amplitude correction) makes less difference in the RMSE of the MME forecasts 

than model bias correction, but brings the spread of the MME forecasts within the neighborhood of that 

indicated by the skill-based SEE for intermediate and long leads. For shortest leads, the MME spread 

becomes smaller than the SEE-based spread. 

A clear conclusion is that individual model biases should be corrected before the merging into a MME is 

done: 

Correction of model amplitude biases should also be done. It reduces the interannual variability of the 

MME forecasts to be lower than that of the observations, to minimize squared errors and to create 

probabilistic reliability (lack of overconfidence). The lower the hindcast-based skill, the smaller the 

interannual variability of the MME forecasts should become.  

A final thought concerns best way to display the forecast plume for users. Both the mean of the MME and 

the associated uncertainty must be shown in an easily understood and usable way.   
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